Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 102  

 
   Table of Contents      
ORIGINAL ARTICLE
Year : 2021  |  Volume : 20  |  Issue : 1  |  Page : 73-81

Initial clinical evaluation of indigenous90Y-DOTATATE in sequential duo-PRRT approach (177Lu-DOTATATE and90Y-DOTATATE) in neuroendocrine tumors with large bulky disease: Observation on tolerability,90Y-DOTATATE post- PRRT imaging characteristics (bremsstrahlung and PETCT) and early adverse effects


Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Parel; Homi Bhabha National Institute, Mumbai, Maharashtra, India

Date of Submission27-May-2019
Date of Decision29-May-2020
Date of Acceptance13-Jun-2020
Date of Web Publication02-Oct-2020

Correspondence Address:
Dr. Sandip Basu
Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Jerbai Wadia Road, Parel, Mumbai - 400 012, Maharashtra; Homi Bhabha National Institute, Mumbai, Maharashtra
India
Login to access the Email id


DOI: 10.4103/wjnm.WJNM_52_20

Rights and Permissions
   Abstract 

177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) alone has lesser potential in the clinical setting of neuroendocrine tumor (NET) with large bulky disease and nonhomogeneous somatostatin receptors (SSTR) distribution, owing to lower energy (Eβmax 0.497 MeV) and a shorter particle penetration range (maximum 2–4 mm) of177Lu. In large bulky NETs,90Yttrium (90Y) has the theoretical advantages because of a longer beta particle penetration range (a maximum soft tissue penetration of 11 mm). Therefore, a combination of177Lu and90Y is a theoretically sound concept that can result in better response in metastatic NET with large-bulky lesion and non-homogeneous SSTR distribution. The aim of the study was to determine the feasibility of combining90Y-DOTATATE with177Lu-DOTATATE PRRT as sequential duo-PRRT in metastatic NET with (≥5 cm) including the post90Y-DOTATATE-PRRT imaging and also to determine early toxicity of the duo-PRRT approach. A total of 9 patients received combination of177Lu-DOTATATE with90Y-DOTATATE (indigenously prepared and approved) through sequential duo-PRRT approach. These 9 NET patients were included and analyzed in this study. All 9 patients had undergone post-PRRT90Y-DOTATATE imaging, including a whole-body planar bremsstrahlung imaging followed by regional single-photon emission computed tomography (SPECT)-computed tomography (CT) imaging and also a regional positron emission tomography–computed tomography imaging. Grading of90Y-DOTATATE and177Lu-DOTATATE uptake was done on post-PRRT imaging by both modalities. The size of the lesions ranged from 5.5 cm to 16 cm with average size of 10 cm before sequential duo-PRRT was decided. Sequential duo-PRRT was administered because of stable, unresponsive disease following177Lu-DOTATATE in 5 patients (55.6%), progressive disease after177Lu-DOTATATE in 2 patients (22.2%), and with neoadjuvant intent in 2 patients (22.2%). The total cumulative dose of177Lu-DOTATATE before duo-pRRT ranged from 11.84 GBq to 37 GBq per patient and average administered dose of 27.21 GBq per patient in this study. Out of 9 patients, 8 patients received single cycle of90Y-DOTATATE (ranging from 2.66 GBq to 3.4 GBq per patient with average administered dose of 3.12 GBq per patient). One patient received two cycles of90Y-DOTATATE (total dose of 6.2 GBq). Out of 9 patients, 8 patients showed excellent tracer concentration in lesions on post-PRRT90Y-DOTATATE imaging and the remaining 1 patient showed fairly adequate90Y-DOTATATE tracer uptake in lesion on visual analysis. There was matched90Y-DOTATATE uptake with68Ga-DOTATATE and also with177LuDOTATATE in all 9 patients. The sequential duo-PRRT was well tolerated by all patients. Two patients (22.2%) developed mild nausea, one patient (11.1%) developed transient mild-grade hemoglobin toxicity, and one patient (11.1%) developed mild-grade gastrointestinal symptoms (loose motion and abdominal pain). No nephrotoxicity, hepatotoxicity, and other hematological toxicity was observed. The combination of the indigenous90Y-DOTATATE with177Lu-DOTATATE PRRT in NET as sequential duo-PRRT was well tolerated, feasible and safe in stable, unresponsive/progressive disease following single isotope177Lu-DOTATATE therapy and also in neoadjuvant PRRT setting with large bulky lesion (≥≥5cm). Post-PRRT90Y-DOTATATE imaging showed excellent90Y-DOTATATE uptake in nearly all NET patients. Mild-grade early adverse effects were easily manageable and controllable in this sequential duo-PRRT approach.

Keywords: 177Lu-DOTATATE,68Ga-DOTATATE PET-CT,90Y-DOTATATE, duo-PRRT, peptide receptor radionuclide therapy (PRRT), Tandem PRRT


How to cite this article:
Parghane RV, Mitra A, Bannore TU, Rakshit S, Banerjee S, Basu S. Initial clinical evaluation of indigenous90Y-DOTATATE in sequential duo-PRRT approach (177Lu-DOTATATE and90Y-DOTATATE) in neuroendocrine tumors with large bulky disease: Observation on tolerability,90Y-DOTATATE post- PRRT imaging characteristics (bremsstrahlung and PETCT) and early adverse effects. World J Nucl Med 2021;20:73-81

How to cite this URL:
Parghane RV, Mitra A, Bannore TU, Rakshit S, Banerjee S, Basu S. Initial clinical evaluation of indigenous90Y-DOTATATE in sequential duo-PRRT approach (177Lu-DOTATATE and90Y-DOTATATE) in neuroendocrine tumors with large bulky disease: Observation on tolerability,90Y-DOTATATE post- PRRT imaging characteristics (bremsstrahlung and PETCT) and early adverse effects. World J Nucl Med [serial online] 2021 [cited 2021 Mar 4];20:73-81. Available from: http://www.wjnm.org/text.asp?2021/20/1/73/297096


   Introduction Top


Neuroendocrine tumors (NET) are a heterogeneous group of neoplasms, arising from the endocrine cells which are present throughout body most commonly in the gastrointestinal and bronchopulmonary tracts. The unique feature of NET is overexpression of somatostatin receptors (SSTR) in primary as well as metastatic lesions. There are five subtypes of SSTR. Out of five subtypes, type 2 is commonly expressed in most of NET cases and this is a key target molecule for peptide receptor radionuclide therapy (PRRT).[1]

The treatment management of localized NET is surgery, which is possible in limited number of cases. More than 40% of NET patients present with metastatic disease at time of diagnosis and these patients require systemic therapies. The therapeutic landscape of advanced/metastatic NET has undergone a remarkable expansion in this decade specially within recent years, which includes long acting somatostatin analogs (SSAs), chemotherapy, molecular targeted treatments (everolimus and sunitinib), alpha-interferon, and PRRT.[2],[3],[4]

The recently published randomized phase III NETTER-1 trial[5] provided high-level evidence of efficacy and safety of177Lu-DOTATATE PRRT in mid-gut NET. However, the result of NETTER-1 trial generated a multitude of new questions regarding timing, sequencing, and matching of patients with the most appropriate treatment protocols available for the management of metastatic/advanced NET.

The role of177Lu-DOTATATE PRRT in NET may be doubtful in large bulky lesions (≥5 cm) with nonhomogeneous SSTR distribution and this is because of lower energy (Eβmax 0.497 MeV) and a shorter particle penetration range (maximum 2–4 mm) of177Lu-DOTATATE. In such conditions,90Yttrium (90Y) has theoretical advantages because of a longer beta particle penetration range (a maximum soft tissue penetration of 11 mm).[6],[7]

A combination of177Lu and90Y therapy is a theoretically sound concept that can translate into better response in NETs with both small and large-bulky lesions. The aim of the present study was to determine the feasibility of combining90Y-DOTATATE with177Lu-DOTATATE PRRT as sequential duo-PRRT in NET with large bulky lesion (≥5 cm) and also to determine early toxicity of this duo-PRRT approach.


   Materials and Methods Top


In this study, we retrospectively reviewed the medical records of 9 patients who received combination of177Lu-DOTATATE with90Y-DOTATATE sequential duo-PRRT, within the period from September 2019 to February 2020 and these 9 NET patients were included and analyzed in this study (this corresponds to the time period during which the approved indigenous90Y was available to our Institute). The product was approved for the routine clinical use by the Radiopharmaceuticals Committee of the Department of Atomic Energy. The treatments were conducted after obtaining necessary approval from the Institutional Ethics Committee and were also approved by the Institutional Scientific Advisory Committee (IEC Ref: Project No P17/feb/2019).

The eligibility criteria for deciding for sequential duo-PRRT were as follows: patients with pathologically confirmed NET; unresectable and advanced large bulky (≥5 cm) disease; stable, unresponsive/progressive disease on177Lu-DOTATATE (≥2 cycles); and SSTR positive lesions on68Ga-DOTATATE positron emission tomography–computed tomography (PET-CT) (Krenning score ≥2, compared on maximum intensity projection (MIP), coronal and transaxial images).

The exclusion criteria for sequential duo-PRRT included low or absent SSTR expression on68Ga-DOTATATE PET-CT, small sized disease (<5 cm), glomerular filtration rate (GFR) of <60 mL/min, hypoalbuminemia (<20 g/L), platelet count <90 × 109/L or pancytopenia, pregnancy, breast-feeding, severe concomitant illness including severe psychiatric disorders, Eastern Cooperative Oncology Group (ECOG) performance score 4, Karnofsky Performance Status score of <60, and expected life survival <3 months.

Treatment planning

All 9 NET patients had undergone the presequential duo-PRRT work up protocol, which included68Ga-DOTATATE PET-CT and18F-FDG PET-CT imaging, documentation of clinical symptoms, and measurement of serum chromogranin A (CgA) level before considering sequential duo-PRRT.

68Ga-DOTATATE positron emission tomography–computed tomography and18F-FDG positron emission tomography–computed tomography imaging

68Ga-DOTATATE PET-CT and18F-FDG PET-CT scans were obtained in all 9 NET patients before sequential duo-PRRT.

68Ga-DOTATATE PET-CT scan was performed approximately 60 min after intravenous injection of 74–111 MBq (2–3 mCi) of68Ga-DOTATATE dose. The scans were performed using a time of flight PET-CT scanner (Philips Gemini TF TOF 16 PET/CT scanner) with LYSO-based PET crystal. After obtaining a scout image whole-body CT scanning was performed first in craniocaudal direction (voltage 120 kVp, slice thickness 5 mm, pitch-0.83, FOV 600 mm, rotation time −0.5 s, 250 mA, image matrix-512 × 512) without any breath hold instructions. Contrast or noncontrast CT was used for diagnostic and attenuation correction of the PET data. PET scanning was performed immediately after the CT acquisition in the three-dimensional (3D) emission mode with 3 min per bed position. Images were reconstructed iteratively using RAMLA algorithm (2 iterations, 21 subsets). The acquired studies were viewed (transaxial, coronal, and sagittal views) in multimodality workstation of Philips Gemini TF processing system. Similar imaging protocol was applied for18F-FDG PET-CT scan, which was done 1 day after68Ga-DOTATATE PET-CT scan. For18F-FDG PET-CT scan, all patients were fasted for at least 6 h prior to the intravenous injection of 5MBq/kg body weight of18F-FDG and whole-body full-ring dedicated 3D PET-CT scanning was done (50 mA, 120 kVp, noncontrast/contrast CT scan for attenuation correction and anatomical co-localization).

If PET-CT scans revealed SSTR avid large bulky lesions (≥5 cm) on68Ga-DOTATATE imaging as shown in [Figure 1]a, which were stable, unresponsive/progressive disease on177Lu-DOTATATE (≥2 cycles) then sequential duo-PRRT was planned in these patients.
Figure 1: A 29 years old male patient, known case of duodenal neuroendocrine tumor (MIB Index = 8%) with bulky metastatic liver disease. Patient initially underwent surgical resection of duodenal lesion followed by 2 cycles of177Lu-DOTATATE peptide receptor radionuclide therapy then90Y-DOTATATE peptide receptor radionuclide therapy.68Ga-DOTATATE PET-CT scan (a) showed somatostatin receptors avid (Krenning score = 4) large sized (16 cm × 13 cm) liver lesion (arrow) and post177Lu-DOTATATE therapy scan (b) showed good tracer uptake (grade = 3) in liver lesion

Click here to view


Investigations and Health Related Quality of Life Scales

The various investigations such as hematological parameters, renal function test, GFR, liver function test, and serum CgA levels were measured and documented in all NET patients before sequential duo-PRRT. The patients were examined for health related quality of life (HRQoL) scales which included ECOG Performance Status and Karnofsky score before and following sequential duo-PRRT.

177Lu-DOTATATE therapy

Long and short-acting somatostatin was stopped for 4 weeks and 24 h respectively before177Lu-DOTATATE PRRT.

The Bhabha Atomic Research Centre (BARC), Mumbai, India, supplied a sterile solution of177LuCl3 in 0.01M HCl with a specific activity of >999 MBq/ug. In house labeling was carried out with a radiochemical purity of >99% for177LuDOTATATE product.

The standard mixed amino acid preparation containing lysine and arginine was infused 30 min before PRRT and maintained over 7 h. To prevent nausea and vomiting, 4 mg of ondansetron and 4 mg of dexamethasone was administered before amino acid infusion.

177Lu-DOTATATE with dose activity of 5.5–7.4 GBq per cycle in 100 ml of normal saline was administered intravenously over 30 min. For177Lu-DOTATATE PRRT, all NET patients were admitted in radionuclide therapy ward and monitored for 24 h after PRRT for any acute adverse effects. The177Lu-DOTATATE PRRT was divided into cycles and cycles were repeated at intervals of 10–12 weeks.

Post-peptide receptor radionuclide therapy177Lu-DOTATATE whole-body planar imaging

Whole-body planar imaging and single photon emission CT (SPECT) imaging were conducted 24 h after177Lu-DOTATATE using a large field of view gamma camera with a medium-energy collimator as shown in [Figure 1]b.

90Y-DOTATATE therapy

Long- and short-acting somatostatins were stopped for 4 weeks and 24 h respectively before90Y-DOTATATE PRRT therapy.

90Y-Acetate was indigenously sourced from high-level liquid waste, using separation method based on a two-stage90Sr/90Y generator system based on supported liquid membrane technology, developed at Nuclear Recycle Group, BARC, and Mumbai, India. The quality control parameters of90Y-acetate were validated and compared to the pharmacopeia standard. This90Y-acetate was supplied as a sterile solution to Radiation Medicine Centre, Mumbai, India, and in-house labeling was carried with a radiochemical purity of >99% for90Y-DOTATATE final product. The product was approved by the regulatory body of DAE (Department of Atomic Energy) India, the Radiopharmaceutical Committee, for routine clinical use.

The standard mixed amino acid preparation containing lysine and arginine was infused 30 min before PRRT and maintained over 7–8 h. To prevent nausea and vomiting, 4 mg of ondansetron and 4 mg of dexamethasone were administered before amino acid infusion.

90Y-DOTATATE with dose activity of 2.6–3.4 GBq per cycle in 100 ml of normal saline was administered intravenously over 30 min. For90Y-DOTATATE PRRT, all NET patients were admitted in radionuclide therapy ward and monitored for 24 h after PRRT therapy for any acute adverse effects.

Post-peptide receptor radionuclide therapy90Y-DOTATATE imaging

Whole-body planar bremsstrahlung imaging [Figure 2]a and SPECT-CT imaging were acquired 24 h after90Y-DOTATATE PRRT using a large field of view gamma camera with a high-energy collimator and various windows setting with a range of 76–250 keV. A whole-body planar scan was performed at a speed of ~10 cm/min. The SPECT/SPECT-CT of regional part of body [Figure 2]b was performed after whole-body scan using a dual-head camera. The high-energy, parallel hole, general-purpose collimators were used. In the case of SPECT or SPECT/CT, acquisition parameters were: 128 × 128 matrix, zoom 1.00, 1 min/frame for 12 frames.
Figure 2: After 2 cycles of177Lu-DOTATATE peptide receptor radionuclide therapy, the patient received90Y-DOTATATE therapy (single cycle, dose = 3.4 GBq). Post90Y-DOTATATE Bremsstrahlung imaging with whole-body planar and single photon emission computed tomography-computed tomography scans (a and b) and post90Y-DOTATATE regional positron emission tomography–computed tomography scan (c) demonstrated good tracer uptake of90Y-DOTATATE (grade = 3) in liver lesions (arrows). No major adverse effect was seen after90Y-DOTATATE peptide receptor radionuclide therapy in this patient

Click here to view


Regional PET-CT scans were conducted 24–36 h after90Y-DOTATATE PRRT using a time of flight PET-CT scanner (Philips Gemini TF TOF 16 PET/CT scanner) with LYSO-based PET crystal. After obtaining a scout image regional CT scanning was performed first in cranio-caudal direction (voltage 120 kVp, slice thickness 5 mm, pitch-0.83, FOV 600 mm, rotation time-0.5 sec, 50 mA, image matrix-512 × 512) without any breath hold instructions. Non contrast low dose CT was used for attenuation correction of the PET data. PET scanning was performed immediately after the CT acquisition in the 3D emission mode with 20 mins per bed position for 2 beds. Images were reconstructed iteratively using RAMLA algorithm (2 iterations, 21 subsets). The acquired studies were viewed (transaxial, coronal and sagittal views) in multimodality-work-station of Philips Gemini TF processing system [[Figure 2]c.

Post-PRRT177Lu-DOTATATE uptake in the lesions (on gamma camera imaging) and the post-PRRT90Y-DOTATATE uptake in lesions on gamma camera imaging and on PET/CT scanner were divided into 1, 2 and 3 grade based on visual comparison of tracer uptake in the lesions with physiological liver/kidney uptake, where tracer uptake (177Lu-DOTATATE or90Y-DOTATATE uptake) in lesion was less than liver/kidney uptake consider as grade 1, tracer uptake in lesion equal to liver/kidney uptake as grade 2, and tracer uptake in lesion more than liver/kidney uptake as grade 3.

Follow-up

Clinical examinations with vital signs were undertaken both before and after sequential duo-PRRT. The patients were evaluated for symptomatic, ECOG and Karnofsky scores, and biochemical parameters following sequential duo-PRRT. Blood biochemistry and hematological variables, including renal function tests, complete blood counts, serum hemoglobin levels, and liver function test, were measured at biweekly interval after sequential duo-PRRT. Any observed toxicity was recorded continuously. Adverse events were graded according to the Common Terminology Criteria for Adverse Events version 5.0 of the National Cancer Institute with special attention to nausea, vomiting, leukopenia, thrombocytopenia, anemia, and liver and renal adverse events.


   Results Top


A total of 9 patients (3 women, 6 men; median age 55 years, range 46–62 years) received sequential duo-PRRT were included and analyzed retrospectively in this study. The detail of patient characteristics in the study population is shown in [Table 1] and [Table 2].
Table 1: Patient characteristics

Click here to view
Table 2: Patient details

Click here to view


The Ki-67/MiB-1 index ranged from 1% to 30% with an average of 9% in this study population. The WHO grade 1 (Ki-67 index <3%) of tumor differentiation was noted in 3 patients, grade 2 (Ki-67 index 3%–20%) in 5 patients, and grade 3 (Ki-67 index >20%) in 1 patient. Out of the 9 patients, 4 patients (44.4%) had pancreatic NET and the remaining 5 patients (55.6%) included mediastinal NET in 1 patient, rectal NET in 1 patient, duodenal NET in 2 patients, and metastases with unknown primary site in 1 patient. Three patients (33.3%) were symptomatic before sequential duo-PRRT with the most common complaints being abdominal pain, weakness, and weight loss. Out of the 9 patients, 3 patients underwent surgical resection of the primary disease (resection of pancreatic lesion in 1 patient, resection of mediastinal lesion in 1 patient, and resection of duodenal lesion in 1 patient), 5 patients received somatostatin analog therapy, and 1 patient received external beam radiation therapy before sequential duo-PRRT. Out of 9 NET patients, 8 patients (88.8%) had metastatic disease before sequential duo-PRRT and most common site for metastatic disease was liver (n = 7 patients), followed by lymph nodes (n = 3 patients), and bone (n = 2 patients). One patient had localized pancreatic disease in this study. The size of lesions ranged from 5.5 cm to 16 cm with an average size of 10 cm before sequential duo-PRRT was noted in this study. Out of 9 NET patients, 6 patients (66.6%) had FDG avid disease. The total cumulative dose of177Lu-DOTATATE before the adoption of duo-PRRT approach ranged from 11.84 GBq to 37 GBq with average administered dose of 27.21 GBq per patient and177Lu-DOTATATE cycles ranging from 2 to 6 cycles and an average of 4 cycles per patient was given in this study.

Out of the 9 patients, sequential duo-PRRT was considered because of stable, unresponsive disease following177Lu-DOTATATE in 5 patients (55.6%), progressive disease after177Lu-DOTATATE in 2 patients (22.2%) and in an neoadjuvant intent in 2 patients (22.2%). At the time of analysis, single cycle of90Y-DOTATATE was given in 8 patients, administered dose ranging from 2.66 GBq to 3.4 GBq per patient and average administered dose of 3.12 GBq per patient. One patient was given two cycles of90Y-DOTATATE with total dose of 6.2 GBq.

All 9 patients were underwent post-PRRT90Y-DOTATATE imaging, a whole-body planar bremsstrahlung imaging followed by regional SPECT-CT and also a regional PET-CT imaging on PET/CT scanner. Out of 9 patients, 8 patients showed excellent (grade 3)90Y-DOTATATE tracer concentration in lesions on post-PRRT90Y-DOTATATE imaging and 1 patient (Grade 1) showed fairly adequate90Y-DOTATATE tracer uptake on visual analysis. In all 9 patients, the lesions visualized on68Ga-DOTATATE PET-CT, post-PRRT177Lu-DOTATATE and post-PRRT90Y-DOTATATE imaging (bremsstrahlung—planar, regional SPECT-CT and regional PET-CT) demonstrating congruent good tracer activity of90Y-DOTATATE as shown in the comparison in [Table 3].
Table 3: Tracers uptake in the lesions on visual analysis

Click here to view


At the time of analysis, the follow-up period after90Y-DOTATATE therapy ranged from 15 to 135 days (average of 82 days). During this follow-up period, two patients (22.2%) developed mild nausea (controlled well by giving another dose of 4 mg of ondansetron), one patient (11.1%) developed transient mild-grade hemoglobin toxicity (recovered within 10 days) and one patient (11.1%) developed mild-grade gastrointestinal symptoms (loose motion and abdominal pain recovering within 7 days). No nephro-toxicity, hepato-toxicity and other hematological toxicity was observed after the90Y-DOTATATE therapy (as part of sequential duo-PRRT), as mentioned in [Table 4].
Table 4: Adverse events documentation

Click here to view



   Discussion Top


For the metastatic/advanced NET, PRRT with radiolabelled somatostatin analogs has become an established method of treatment. Historically,111Indium labeled with (diethylenetriaminepentaacetic acid [DTPA] 0) octreotide was used in some clinical trials, which had a short tissue penetration of the emitted Auger electrons (ranging between nanometers and micrometers) with best result observed in small sized and highly SSTR avid NETs.[8] In one of study, amongst the 50 NET patients treated with111In-pentetreotide, 3 patients developed leukemia or myelodysplastic syndrome (MDS) who received >100 GBq therapeutic dose of111In-pentetreotide.[9] Presently,111In-pentetreotide is not commonly used in the management of NET, because of limited therapeutic result, higher therapeutic doses requirement, and also availability of better β-emitter radionuclides for PRRT in NET.

Also subsequently a modified somatostatin analog (Tyr3) octreotide with a higher affinity for the SSTR subtype-2 was developed and new chelator, 1, 4, 7, 10-Tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) instead of DTPA was used to enable a more stable binding of the intended β-emitter (90Y and177Lutetium) radionuclide. The beta-emitter radionuclides such as90Y (pure β-emitter) emits beta particles with a high maximum energy (Emax 2.27 MeV) and longer maximum particle range in tissues (11 mm) with physical half-life of 64 h. The use of90Y labeled with DOTA-Tyr3-octreotide (90Y-DOTATOC) in NET had showed objective response rates of 6%–37% and occurrence of high renal toxicity in initial studies.[10],[11] This higher renal toxicity of90Y-DOTATOC therapy may be related to longer penetration particle range of90Y that results in “cross-fire” effect to irradiate not only the targeted cell but also the surrounding cells and also higher affinity of DOTATOC to SSTR 3 and SSTR5 as compared to SSTR2. The177Lu emits both beta particles (Emax 0.497 MeV and a shorter particle range in tissues [maximum 2–4 mm]) and gamma rays (113 keV [6.4%]; 208 keV [11%]). Because of the γ-emission, posttherapeutic gamma camera scintigraphic imaging is possible with177Lu. This posttherapeutic imaging provided an accurate representation of the distribution of the radionuclide therapy in all the lesions, and used to monitor SSTR uptake following PRRT treatments. The177Lu-DOTA-Tyr3-octreotate (177Lu-DOTATATE) has shorter tissue penetration range and 9-fold higher peptide receptor affinity for SSTR2 compared to DOTATOC[12] and this resulted in higher tolerability of177Lu-DOTATATE therapy, especially with regard to the kidneys. A lower whole-body dose, especially lower bone marrow and renal toxicity following177Lu-DOTATATE therapy was reported in various studies.

However,177Lu-based PRRT is less effective in large sized tumors with heterogeneous distribution of SSTR over larger areas in tumor and this is because of a lower energy and smaller particle range of177Lu. As such the energy deposition of177Lu is 67% inside a 2-mm lesion, whereas90Y deposited 87% of energy in large tumors (diameter up to 5 cm).[13],[14] Therefore, in patients with both small sized and large bulky NET with heterogeneous distribution of SSTR, a combination of radionuclide (177Lu and90Y) therapy might be the useful, which potentially leads to a better effectiveness than one isotope alone. This combination of radionuclide treatment was first described by De Jong at el in their animal studies which consisted of 50%177Lu-DOTATATE and 50%90Y-DOTATOC. They found extended duration of survival time by 3 times in rats after use of this combination and they concluded in their studies that complementary characteristics of both isotopes allow irradiation of both large and small metastases.[14],[15]

The combination of radionuclide treatment in humans was first time reported by Kunikowska et al. in their clinical trial and this trial was conducted in total 50 NET patients with multiple metastatic lesions of varying sizes. Out of 50 patients, 25 patients were given90Y-DOTATATE alone and 25 patients were given combination of177Lu-DOTATATE and90Y-DOTATATE with 3.7 GBq/m2 body surface area activity dose in three to five cycles along with amino acid infusion for renal protection. They found a longer overall survival (OS) time after treatment with90Y/177Lu-DOTATATE than in the group treated with90Y-DOTATATE alone (OS not reached vs. 26.3 months, P < 0.01). No severe adverse events occurred in90Y-DOTATATE alone and combined90Y/177Lu-DOTATATE treated groups. They found WHO hematological toxicity of grades 1 and 2 with nearly the same frequency in both groups without clinical symptoms and deterioration in kidney function was observed in three patients in each group. They concluded that PRRT with tandem approach (90Y/177Lu-DOTATATE) provides longer OS than with a single radioisotope (90Y-DOTATATE) with comparable safety profile in both groups.[16]

A similar study was conducted by Villard et al.[17] on a larger cohort of 486 NET patients and these patients were divided into two groups, one group (n = 237 patients) received90Y-tetraazacyclododecane-tetraacetic acid modified Tyr-octreotide (DOTATOC) alone and another group (n = 249 patients) received90Y-DOTATOC plus177Lu-DOTATOC PRRT. The patients received combined radionuclide therapy (OS = 5.51 years) had a significantly longer OS than patients who received90Y-DOTATOC (OS 3.96 years) PRRT alone. The rates of adverse effects (severe hematologic and renal toxicity) were comparable in both groups. They concluded that combined radionuclide therapy associated with improved OS compared with single isotope90Y alone PRRT in NET patients with comparable adverse effect profiles in both groups. Villard et al.[17] used DOTATOC instead of DOTATATE for PRRT in their study and found similar result as reported by Kunikowska et al.[16]

Seregni M et al. evaluated tandem90Y-DOTATATE and177Lu-DOTATATE PRRT in 26 metastatic NET patients in their study. These 26 patients were given four therapeutic cycles of alternating177Lu-DOTATATE (5.55 GBq) and90Y-DOTATATE (2.6 GBq). They calculated the absorbed doses in healthy organs using a dosimetric method after administration of177Lu-DOTATATE. They found objective responses of 42.3% with a median progression-free survival longer than 24 months and the cumulative biologically effective doses were below the toxicity limit in the majority of patients in their study. They concluded that tandem90Y-DOTATATE and177Lu-DOTATATE PRRT is an effective therapeutic option in NET cases refractory to conventional therapy with absence of renal damage.[18]

Dumont et al. explored the effects of90Y-DOTATOC (n = 30 patients) and90Y-DOTATOC plus177Lu-DOTATOC (n = 6 patients) on survival of metastatic gastrinoma patients. They found that longer median survival in patients who received90Y-DOTATOC plus177Lu-DOTATOC (median OS = 60.2 months) as compared to90Y-DOTATOC (median OS = 27.0 months) alone received PRRT and concluded that combination of radionuclide therapy was promising tool for management of metastatic progressive gastrinoma.[19]

The size of lesions was not clearly mentioned for treatment of combined radionuclide therapy in most of the studies available in literature. Kong et al. evaluated sequential PRRT therapy (90Y-DOTATATE followed by177Lu-DOTATATE) along radiosensitising chemotherapy in NET patients with >4 cm size lesion. They found that 42% of partial response and 21% of minor response on anatomical response evaluation after use of sequential peptide receptor chemoradionuclide therapy (PRCRT). Out of 26 patients, 8 patients and 2 patients developed grade 3/4 lymphopenia and grade 3/4 thrombocytopenia in their study respectively without significant hepatic or renal toxicity. They concluded that, PRCRT with90Y-DOTATATE followed by177Lu-DOTATATE achieved high clinical and morphological response in NET patients with bulky tumors.[20]

The long-term (10-year follow-up period) side effects of tandem90Y/177Lu-DOTATATE therapy in 59 NET patients were evaluated by Kunikowska et al. in one of their studies. One patient (2%) developed MDS and one patient (2%) grade 3 nephrotoxicity in their study. No other grade 3 and 4 hematological or renal toxicity was observed during their 10-year follow-up period. They concluded that, tandem90Y/177Lu-DOTATATE therapy was highly effective and safe considering long-term side effects of PRRT.[21]

In our study, we evaluated sequential duo-PRRT (177Lu-DOTATATE followed by90Y-DOTATATE) in total 9 NET patients with bulky large sized lesion (≥5 cm) which was unique in the sense that, as we have started using the combined radionuclide therapy with a size criterion. In our initial observational study with the indigenous90Y, 8 patients showed excellent (grade 3)90Y-DOTATATE uptake in lesions on visual analysis, which were matched with68Ga-DOTATATE uptake and177Lu-DOTATATE uptake in both PET/CT scanner and bremsstrahlung imaging respectively as shown in [Figure 1] and [Figure 2].

In our study, the follow-up period after90Y-DOTATATE therapy ranged from 15 to 135 days with average of 82 days and during this follow-up period, two patients (22.2%) developed mild nausea, one patient (11.1%) developed transient mild-grade hemoglobin toxicity and one patient (11.1%) developed mild-grade gastrointestinal symptoms, which were easily manageable and controllable. In our study, no nephro-toxicity, hepato-toxicity and other major hematological toxicity was noted and these finding were similar to various studies available in literature that used tandem/duo-PRRT for treatment of metastatic/advanced NET. Small population size, short follow-up period, lack of dosimetry and control group, were the major limitations, though we felt it would be worthwhile to report the initial observations.


   Conclusion Top


The combination of the indigenous90Y-DOTATATE with177Lu-DOTATATE PRRT in NET as sequential duoPRRT was well tolerated, feasible and safe in stable, unresponsive/progressive disease following single isotope177Lu-DOTATATE therapy and also in neoadjuvant PRRT setting with large bulky lesion (≥5 cm). Post-PRRT90Y-DOTATATE imaging showed excellent90Y-DOTATATE uptake in nearly all NET patients. Mild-grade early adverse effects were easily manageable and controllable in this sequential duo-PRRT approach.

Acknowledgements

The authors acknowledge the contribution of the Fuel Reprocessing Division, Nuclear Recycle Group, BARC for providing the indigenously sourced90Y-Acetate as a Clinical Grade Radiochemical for use in Radiopharmaceutical Formulations.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Møller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. Biochim Biophys Acta 2003;1616:1-84.  Back to cited text no. 1
    
2.
Cives M, Soares HP, Strosberg J. Will clinical heterogeneity of neuroendocrine tumors impact their management in the future? Lessons from recent trials. Curr Opin Oncol 2016;28:359-66.  Back to cited text no. 2
    
3.
Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008;9:61-72.  Back to cited text no. 3
    
4.
Kim SJ, Kim JW, Han SW, Oh DY, Lee SH, Kim DW, et al. Biological characteristics and treatment outcomes of metastatic or recurrent neuroendocrine tumors: Tumor grade and metastatic site are important for treatment strategy. BMC Cancer 2010;10:448.  Back to cited text no. 4
    
5.
Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-dotatate for Midgut neuroendocrine tumors. N Engl J Med 2017;376:125-35.  Back to cited text no. 5
    
6.
Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O'Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013;40:800-16.  Back to cited text no. 6
    
7.
Bodei L, Cremonesi M, Grana CM, Chinol M, Baio SM, Severi S, et al. Yttrium-labelled peptides for therapy of NET. Eur J Nucl Med Mol Imaging 2012;39 Suppl 1:S93-102.  Back to cited text no. 7
    
8.
Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med 2000;41:1704-13.  Back to cited text no. 8
    
9.
Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA] octreotide: The Rotterdam experience. Semin Nucl Med 2002;32:110-22.  Back to cited text no. 9
    
10.
Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 2011;29:2416-23.  Back to cited text no. 10
    
11.
Severi S, Grassi I, Nicolini S, Sansovini M, Bongiovanni A, Paganelli G. Peptide receptor radionuclide therapy in the management of gastrointestinal neuroendocrine tumors: Efficacy profile, safety, and quality of life. Onco Targets Ther 2017;10:551-7.  Back to cited text no. 11
    
12.
Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000;27:273-82.  Back to cited text no. 12
    
13.
Siegel JA, Stabin MG. Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med 1994;35:152-6.  Back to cited text no. 13
    
14.
de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005;46 Suppl 1:13S-7S.  Back to cited text no. 14
    
15.
De Jong M, Bernard HF, Breeman WA, Bernard BF, Krenning EP. Combination of 90Y- and 177Lu-labeled somatostatin analogs is superior for radionuclide therapy compared to 90Y- or 177Lulabeled analogs only. J Nucl Med 2002;43:123-4.  Back to cited text no. 15
    
16.
Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: Which is a better therapy option? Eur J Nucl Med Mol Imaging 2011;38:1788-97.  Back to cited text no. 16
    
17.
Villard L, Romer A, Marincek N, Brunner P, Koller MT, Schindler C, et al. Cohort study of somatostatin-based radiopeptide therapy with [(90) Y-DOTA]-TOC versus [(90) Y-DOTA]-TOC plus [(177) Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol 2012;30:1100-6.  Back to cited text no. 17
    
18.
Seregni E, Maccauro M, Chiesa C, Mazzaferro V, De Braud F, Buzzoni R, et al. Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy. Eur J Nucl Med Mol Imaging 2014;41:223-30.  Back to cited text no. 18
    
19.
Dumont RA, Seiler D, Marincek N, Brunner P, Radojewski P, Rochlitz C, et al. Survival after somatostatin based radiopeptide therapy with 90Y-DOTATOC vs. 90Y-DOTATOC plus 177Lu-DOTATOC in metastasized gastrinoma. Am J Nucl Med Mol Imaging 2015;5:46-55.  Back to cited text no. 19
    
20.
Kong G, Callahan J, Hofman MS, Pattison DA, Akhurst T, Michael M, et al. High clinical and morphologic response using 90Y-DOTA-octreotate sequenced with 177Lu-DOTA-octreotate induction peptide receptor chemoradionuclide therapy (PRCRT) for bulky neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2017;44:476-89.  Back to cited text no. 20
    
21.
Kunikowska J, Pawlak D, Bąk MI, Kos-Kudła B, Mikołajczak R, Królicki L. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with 90Y/177Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: A 10-year study. Ann Nucl Med 2017;31:347-6.  Back to cited text no. 21
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
    Similar in PUBMED
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed378    
    Printed20    
    Emailed0    
    PDF Downloaded46    
    Comments [Add]    

Recommend this journal