Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 41  
Year : 2016  |  Volume : 15  |  Issue : 1  |  Page : 12-17

A study on determination of an optimized detector for single photon emission computed tomography

1 Immunology Research Center, Tabriz University of Medical Sciences, Sari, Iran
2 Department of Medical Physics, Faculty of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
3 Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
4 Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Iran

Correspondence Address:
Jalil Pirayesh Islamian
Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz
Login to access the Email id

DOI: 10.4103/1450-1147.167588

PMID: 26912973

Rights and Permissions

The detector is a critical component of the single photon emission computed tomography (SPECT) imaging system for giving accurate information from the exact pattern of radionuclide distribution in the target organ. The SIMIND Monte Carlo program was utilized for the simulation of a Siemen's dual head variable angle SPECT imaging system with a low energy high resolution (LEHR) collimator. The Planar and SPECT scans for a 99mTc point source and a Jaszczak Phantom with the both experiment and simulated systems were prepared and after verification and validation of the simulated system, the similar scans of the phantoms were compared (from the point of view of the images' quality), namely, the simulated system with the detectors including bismuth germanate (BGO), yttrium aluminum garnet (YAG:Ce), Cerium-doped yttrium aluminum garnet (YAG:Ce), yttrium aluminum perovslite (YAP:Ce), lutetium aluminum garnet (LuAG:Ce), cerium activated lanthanum bromide (LaBr3), cadmium zinc telluride (CZT), and sodium iodide activated with thallium [NaI(Tl)]. The parameters of full width at half maximum (FWHM), energy and special resolution, sensitivity, and also the comparison of images' quality by the structural similarity (SSIM) algorithm with the Zhou Wang and Rouse/Hemami methods were analyzed. FWHMs for the crystals were calculated at 13.895, 14.321, 14.310, 14.322, 14.184, and 14.312 keV and the related energy resolutions obtained 9.854, 10.229, 10.221, 10.230, 10.131, and 10.223 %, respectively. Finally, SSIM indexes for comparison of the phantom images were calculated at 0.22172, 0.16326, 0.18135, 0.17301, 0.18412, and 0.20433 as compared to NaI(Tl). The results showed that BGO and LuAG: Ce crystals have high sensitivity and resolution, and better image quality as compared to other scintillation crystals.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded293    
    Comments [Add]    

Recommend this journal