Close
  Indian J Med Microbiol
 

Figure 2: Rest myocardial perfusion single photon emission computed tomography and18F-fluorodeoxyglucose positron emission tomography short axis and bullseye images of a patient with fasting blood glucose of 7.7 mmol/L (138.6 mg/dl). No oral glucose was given in this patient. One unit insulin was given intravenously. Blood glucose at the time of18F-fluorodeoxyglucose injection was 5.5 mmol/L (99 mg/dl). Single photon emission computed tomography images demonstrate a large area of significantly reduced perfusion involving the apex, anterior, and lateral walls and inferolateral region.18F-fluorodeoxyglucose positron emission tomography images demonstrate significant viability in these regions but significantly reduced18F-fluorodeoxyglucose uptake in normal myocardium (flip-flop pattern)

Figure 2: Rest myocardial perfusion single photon emission computed tomography and<sup>18</sup>F-fluorodeoxyglucose positron emission tomography short axis and bullseye images of a patient with fasting blood glucose of 7.7 mmol/L (138.6 mg/dl). No oral glucose was given in this patient. One unit insulin was given intravenously. Blood glucose at the time of<sup>18</sup>F-fluorodeoxyglucose injection was 5.5 mmol/L (99 mg/dl). Single photon emission computed tomography images demonstrate a large area of significantly reduced perfusion involving the apex, anterior, and lateral walls and inferolateral region.<sup>18</sup>F-fluorodeoxyglucose positron emission tomography images demonstrate significant viability in these regions but significantly reduced<sup>18</sup>F-fluorodeoxyglucose uptake in normal myocardium (flip-flop pattern)