World Journal of Nuclear Medicine

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 16  |  Issue : 2  |  Page : 114--121

Specific absorbed fractions of internal photon and electron emitters in a human voxel-based phantom: A monte carlo study


Ruhollah Ghahraman Asl1, Ali Asghar Parach2, Shahrokh Nasseri3, Mehdi Momennezhad3, Seyed Rasoul Zakavi4, Hamid Reza Sadoughi5 
1 Bioinformatics Research Centre, Department of Nutrition and Biochemistry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
2 Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3 Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
4 Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
5 Department of Biotechnology and Molecular Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran

Correspondence Address:
Ruhollah Ghahraman Asl
Department of Nutrition and Biochemistry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar
Iran

The specific absorbed fraction (SAF) of energy is an essential element of internal dose assessment. Here reported a set of SAFs calculated for selected organs of a human voxel-based phantom. The Monte Carlo transport code GATE version 6.1 was used to simulate monoenergetic photons and electrons with energies ranging from 10 keV to 2 MeV. The particles were emitted from three source organs: kidneys, liver, and spleen. SAFs were calculated for three target regions in the body (kidneys, liver, and spleen) and compared with the results obtained using the MCNP4B and GATE/GEANT4 Monte Carlo codes. For most photon energies, the self-irradiation is higher, and the cross-irradiation is lower in the GATE results compared to the MCNP4B. The results show generally good agreement for photons and high-energy electrons with discrepancies within − 2% ±3%. Nevertheless, significant differences were found for cross-irradiation of photons of lower energy and electrons of higher energy due to statistical uncertainties larger than 10%. The comparisons of the SAF values for the human voxel phantom do not show significant differences, and the results also demonstrated the usefulness and applicability of GATE Monte Carlo package for voxel level dose calculations in nonuniform media. The present SAFs calculation for the Zubal voxel phantom is validated by the intercomparison of the results obtained by other Monte Carlo codes.


How to cite this article:
Asl RG, Parach AA, Nasseri S, Momennezhad M, Zakavi SR, Sadoughi HR. Specific absorbed fractions of internal photon and electron emitters in a human voxel-based phantom: A monte carlo study.World J Nucl Med 2017;16:114-121


How to cite this URL:
Asl RG, Parach AA, Nasseri S, Momennezhad M, Zakavi SR, Sadoughi HR. Specific absorbed fractions of internal photon and electron emitters in a human voxel-based phantom: A monte carlo study. World J Nucl Med [serial online] 2017 [cited 2020 Jul 16 ];16:114-121
Available from: http://www.wjnm.org/article.asp?issn=1450-1147;year=2017;volume=16;issue=2;spage=114;epage=121;aulast=Asl;type=0