Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 338  

 
   Table of Contents      
ORIGINAL ARTICLE
Year : 2019  |  Volume : 18  |  Issue : 1  |  Page : 42-44

Radioactive iodine (I-131) therapy isolation rooms: Introduction of lead glass window on the wall for patient comfort and better ambience


1 Department of Nuclear Medicine, Molecular Imaging Center, Royal Hospital, Muscat, Sultanate of Oman
2 Department of Radiation Oncology, Medical Physics Unit, Cachar Cancer Hospital and Research Centre, Silchar, Assam, India

Date of Web Publication17-Jan-2019

Correspondence Address:
Prof. Ramamoorthy Ravichandran
Department of Radiation Oncology, Medical Physics Unit, Cachar Cancer Hospital and Research Centre, Silchar - 788 015, Assam
India
Login to access the Email id


DOI: 10.4103/wjnm.WJNM_18_18

PMID: 30774545

Rights and Permissions
   Abstract 

For administration of radioactive iodine for the treatment of differentiated cancer thyroid patients, activities ranging between 1.85GBq and 7.0GBq are used. The construction of concrete rooms cleared by national regulatory authorities do not recommend the presence of windows on the walls or advise same lead equivalence of wall for the lead glass if they are put on the walls. To avoid phobia of patients to give consent for I-131 treatment and to stay in isolation rooms, a necessity was felt to introduce glass window on the opposite side wall of entrance door, which had a service corridor with restricted entry, opening toward garden area. Commercially available lead glass used for X-ray computed tomography scanner was fixed on the 0.35 m thick concrete wall in two rooms. The adequacy of protection offered by the lead glass was determined. A I-131 capsule 600 MBq was moved at a distance 50 cm away from the wall inside the room, and transmitted radiation was measured outside the room. An end window pancake type, beta-gamma survey meter was used. The measured values were normalized for 3.7 GBq at 2 m bed position in μSv/h. The obtained maximum exposure rate was 1.48 μSv/h transmitted from the glass window, against 0.44 μSv/h transmitted at full concrete wall level. As the patients provide shielding to the administrated activity, also the activity is progressively decreasing fast with an effective half-life, the stray radiation levels will be decreasing outside, reducing the mean radiation level to 0.74 μSv/h, and increasing the efficacy of protection. The patient's bed position is at lower level by 0.5 m from the lower edge of the lead glass, so that during patient is in bed the stray radiation levels reduce further. As there are no reports about such facility for isolation rooms, this report may be of value in health physics literature.

Keywords: Carcinoma thyroid, I-131 isolation rooms, lead glass window, stray radiations


How to cite this article:
Al Aamri M, Ravichandran R, Al Balushi N. Radioactive iodine (I-131) therapy isolation rooms: Introduction of lead glass window on the wall for patient comfort and better ambience. World J Nucl Med 2019;18:42-4

How to cite this URL:
Al Aamri M, Ravichandran R, Al Balushi N. Radioactive iodine (I-131) therapy isolation rooms: Introduction of lead glass window on the wall for patient comfort and better ambience. World J Nucl Med [serial online] 2019 [cited 2019 Aug 18];18:42-4. Available from: http://www.wjnm.org/text.asp?2019/18/1/42/250317




   Introduction Top


For administration of radioactive iodine for the treatment of differentiated cancer thyroid patients, activities ranging between 1.85 GBq and 7.0 GBq are used. Hospital local safety guidelines stipulate isolation of patients till their radioactive burden reduces to a level <10 μSv/h at 1 m. The construction of concrete rooms gets clearance by national regulatory authorities. The regulatory bodies normally do not recommend the presence of windows on the barrier walls.[1],[2] If any windows are provided, it shall have lead equivalence equal to that of the barrier concrete wall, and the side fittings shall have radiation leak proof collars. Centralized air conditioning with filters is incorporated in the design.

Two isolation rooms, originally designed for manual brachytherapy with Cs-137 and Ir-192, were being used as isolation rooms, from 2005, for I-131 therapy patients. We started therapy administrations of iodine-131 during February 2006. On an average, 50–60 patients receive I-131 treatments. The I-131 activity in the form of capsules is imported from GE Health Care, Amersham, UK. Details about the method of calibration of capsules, the design of the isolation wards and waste management, clinical data were brought out in our earlier publications.[3],[4],[5],[6],[7],[8],[9]

Our experience over a decade showed that many patients have phobia to stay in isolation rooms for >3 days; and hence, many did not take the treatments. A necessity was felt to introduce glass window on the opposite, back side wall of entrance door, which had a service corridor with restricted entry, opening toward the garden area. We outline the measurements undertaken to document the adequacy of radiation protection offered by the lead glass window.


   Materials and Methods Top


Commercially available lead glass used for X-ray computed tomography (CT) scanner of size 1380 mm × 620 mm, of physical thickness 8.5 mm (2 mm Pb Equivalent) was fixed on the 0.35 m thick concrete wall in both the rooms as viewing window (VW) [Figure 1]. The adequacy of protection offered by the lead glass was determined using a 600 MBq I-131 capsule moved at a distance 50 cm away parallel from the wall inside the room and measuring transmission outside the room. “An end window beta-gamma (Inovision, Model 190) handheld autoranging wide range survey meter with 'pancake end window Geiger Műller (GM) detector' having μR/h and counts per min” sensitive mode was used. The readings were converted to SI units later (in μSv/h). The uncertainty of measurements with this survey instrument was within ± 15%. Measurements were performed at the middle-level height of the lead glass (on the outer side of the glass), on the edge of the wall. Measurements were carried as a profile at 15 cm intervals up to 90 cm either sides of the midpoint, so as to go beyond both sides of 138 cm lead glass (glass part 69 cm either side). [Figure 2] shows the geometry of the measurements carried out. One set of measurements along the edge of the wall below the glass window, along the concrete wall. Another set of measurements along the midline of the VW outside. Background reading of survey meter without radioactive source 10.5 μR/h. The measured values were normalized for 3.7 GBq at 2 m bed position in μSv/h.
Figure 1: Lead glass window on the concrete wall same size in each of the two rooms

Click here to view
Figure 2: Measurement geometry for gamma beam transmission from I-131 capsule

Click here to view



   Results Top


The survey meter measured transmission with 600 MBq activity for the two rooms across the middle level of lead glass is shown in [Table 1]. From [Table 1], the maximum exposure rate recorded for Room 1 and Room 2 was 0.58 mR/h and 0.87 mR/h, respectively. As shown in [Table 2], the estimated exposure rate for 3.7 GBq of administered activity in the outer corridor in the middle VW level (by calculation) was 1.48 μSv/h. Below the window level, the estimated exposure rate was 0.44 μSv/h.
Table 1: Measured radiation levels (in μR/h) in the outer corridor with 600 MBq

Click here to view
Table 2: The simulated exposure rate at outside corridor during occupancy of a patient

Click here to view


As the estimates of exposure rates assumed that full activity of 3.7 GBq is all the times present, correction for effective halftime of clearance and also patients' self-shielding to the administrated activity needs to be accounted. [Table 3] summarizes the true estimates for one patient for a stay of 3 days with progressively decreasing activity. Therefore, the realistic exposure rate derived in this study is 0.74 μSv/h after fixing of VW.
Table 3: Corrected exposure rate estimates at the outer corridor

Click here to view



   Discussion Top


This work has brought out our experience in installing a VW which is commercially available for CT scanner room installation. Separate lead equivalence at 364 KeV photons is not specified in literature, as at this energy there is less of photoelectric effect. As there are no reports about such facility for isolation rooms, this report may be of value in health physics literature. The patients' acceptance for I-131 administration was better after they visit and see the presence of window in these isolation rooms. The isolation rooms were handed over back after the present modification, with recommendations (a) to have a cloth screen on the window inside the room for patient's privacy and (b) to have a caution radioactive sign abstaining use of the service corridor by patients and relatives unless there is an emergency. A report was submitted to the Radiation Safety Expert of the Ministry of Health, Sultanate of Oman, regarding the efficacy of radiation protection offered by this VW.


   Conclusions Top


The provision of viewing window in two isolation rooms has helped in improving the ambience for patients under treatment. This precedence will help architects to plan lead glass window in I-131 isolation rooms.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Soman SD, Venkateswaran TV. Radiological Protection Aspects of Radioiodine Therapy for Cancer of the Thyroid. Proc. Of Seminar. Bombay, BARC, Mumbai. March, 4-6; 1985.  Back to cited text no. 1
    
2.
AERB Safety Code for Nuclear Medicine Laboratories. (SC/MED 4), Atomic Energy Regulatory Board. Mumbai: Govt of India Publications; 1989.  Back to cited text no. 2
    
3.
Ravichandran R, Arunkumar LS, Sreeram R, Gorman K, Al Saadi A. Design, function and radiation safety aspects of delay tank system connected to radioactive iodine isolation wards at oncology centre, Oman. J Med Phys 2006;31:156-7.  Back to cited text no. 3
    
4.
Ravichandran R, Binukumar J, Saadi AA. Estimation of effective half life of clearance of radioactive iodine (I) in patients treated for hyperthyroidism and carcinoma thyroid. Indian J Nucl Med 2010;25:49-52.  Back to cited text no. 4
[PUBMED]  [Full text]  
5.
Ravichandran R, Binukumar J. Development of departmental standard for traceability of measured activity for I-131 therapy capsules used in nuclear medicine. J Med Phys 2011;36:46-50.  Back to cited text no. 5
[PUBMED]  [Full text]  
6.
Ravichandran R, Binukumar JP, Sreeram R, Arunkumar LS. An overview of radioactive waste disposal procedures of a nuclear medicine department. J Med Phys 2011;36:95-9.  Back to cited text no. 6
[PUBMED]  [Full text]  
7.
Ravichandran R, Al Saadi A, Al Balushi N. Radioactive body burden measurements in (131) iodine therapy for differentiated thyroid cancer: Effect of recombinant thyroid stimulating hormone in whole body (131)iodine clearance. World J Nucl Med 2014;13:56-61.  Back to cited text no. 7
[PUBMED]  [Full text]  
8.
Ravichandran R, Al Balushi N. Radioactive(131) Iodine body burden and blood dose estimates in treatment for differentiated thyroid cancer by external probe counting. World J Nucl Med 2016;15:153-60.  Back to cited text no. 8
[PUBMED]  [Full text]  
9.
Al Aamri M, Ravichandran R, Binukumar JP, Al Balushi N. Therapeutic applications of radioactive (131)iodine: Procedures and incidents with capsules. Indian J Nucl Med 2016;31:176-8.  Back to cited text no. 9
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed801    
    Printed28    
    Emailed0    
    PDF Downloaded139    
    Comments [Add]    

Recommend this journal