Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 562  

 
   Table of Contents      
CASE REPORT
Year : 2018  |  Volume : 17  |  Issue : 3  |  Page : 201-203

Gallbladder activity on sodium fluoride positron emission tomography/computed tomography bone scan


1 Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait
2 Department of Nuclear Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
3 Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey

Date of Web Publication21-Jun-2018

Correspondence Address:
Ismet Sarikaya
Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110
Kuwait
Login to access the Email id


DOI: 10.4103/wjnm.WJNM_45_17

PMID: 30034287

Rights and Permissions
   Abstract 


We incidentally identified gallbladder activity on 18F sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) bone images in five patients. Variable degree of bowel activity is usually seen on NaF PET/CT images, and its mechanism is unknown. Gallbladder activity in our cases may indicate that hepatobiliary excretion of the 18F NaF is the reason for bowel activity on NaF PET/CT images. However, excretion of radiotracer through bowel may also contribute to the bowel activity.

Keywords: 18F sodium fluoride, bowel, gallbladder, positron emission tomography/computed tomography, sodium fluoride


How to cite this article:
Sarikaya I, Elgazzar AH, Alfeeli MA, Sarikaya A. Gallbladder activity on sodium fluoride positron emission tomography/computed tomography bone scan. World J Nucl Med 2018;17:201-3

How to cite this URL:
Sarikaya I, Elgazzar AH, Alfeeli MA, Sarikaya A. Gallbladder activity on sodium fluoride positron emission tomography/computed tomography bone scan. World J Nucl Med [serial online] 2018 [cited 2020 Jul 4];17:201-3. Available from: http://www.wjnm.org/text.asp?2018/17/3/201/234889




   Introduction Top


There is increasing use of 18 F sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) bone scan mainly in the detection of bone metastases.[1],[2],[3] Uptake mechanism of 18 F NaF in the bone includes exchange of 18 F ions with hydroxyl ions (OH–) on the surface of the hydroxyapatite to form fluorapatite.[4] Major route of excretion of the radiotracer is through the kidneys. In addition to intense renal and bladder activity, mild physiologic soft tissue activities may be seen in various tissues, such as choroid plexus, heart and large vessels (blood pool), and bowel. We also incidentally identified mild gallbladder activity in some of our patients. These patients also showed faint liver and splenic and gastric wall activity. In this article, we will present the images of our patients and briefly discuss the reasons for uptake/activity in these tissues.


   Case Report Top


In routine evaluation of NaF PET/CT bone images, we incidentally identified gallbladder activity in five patients. All the patients had a history of prostate cancer (age range 61–73 years).

NaF PET/CT images were acquired 60 min following intravenous injection of 222 MBq (6 mCi)18 F NaF. Before PET images, a low-dose CT was obtained for attenuation correction and anatomic localization purposes. PET acquisition was 3 min/bed from top of the head to toes. PET images were corrected for attenuation on the basis of the CT data and reconstructed using a standard iterative algorithm and reformatted into transaxial, coronal, and sagittal views. Maximum intensity projection (MIP) images were also generated. Both attenuation corrected and uncorrected PET images as well as PET/CT fusion and MIP images were evaluated visually to assess activities in bone and soft tissues.

In addition to gallbladder activity, patients also showed varying degree of bowel activity (mild, moderate, or significant). Faint activities in one or more of the following tissues: liver, spleen, and gastric wall were also identified. [Figure 1], [Figure 2], [Figure 3] demonstrate activity in the gallbladder as well as bowel, liver, spleen, and gastric wall in our patients.
Figure 1: Selected transaxial computed tomography, positron emission tomography, and positron emission tomography/computed tomography fusion images demonstrate mild activity in the gallbladder (arrow) and bowel (arrowhead). Note the slight misregistration of bowel on positron emission tomography/computed tomography fusion images and photopenic artifact medially. Further, note the faint liver (L), and mild splenic (S) and gastric wall (G) activity

Click here to view
Figure 2: Selected transaxial computed tomography, positron emission tomography, and positron emission tomography/computed tomography fusion images demonstrate mild activity in the tip of the gallbladder sac (arrow) and significant activity in the bowel (arrow head). Further, note the faint liver (L) and splenic (S) activity

Click here to view
Figure 3: Selected transaxial computed tomography, positron emission tomography, and positron emission tomography/computed tomography fusion images of three patients (a-c) demonstrate mild activity in the gallbladder (arrows) and bowel (arrow heads) and faint activity in the liver (L), spleen (S), and gastric wall (G)

Click here to view



   Discussion Top


The exact mechanism of bowel activity on NaF PET/CT was reported to be unknown.[5] Visualization of the gallbladder in our NaF PET/CT studies may indicate that hepatobiliary excretion of 18 F NaF is the reason for bowel activity. However, in addition to hepatobiliary excretion, excretion through the intestine may also contribute to bowel activity. Faint diffuse activity in the liver could be due to blood pool activity and/or hepatocellular uptake of radiotracer. Mild diffuse splenic activity is likely from blood pool activity as it is more prominent on early than delayed images. Mild reticuloendothelial cell uptake may also contribute to uptake in the liver and spleen. Mild diffuse stomach wall uptake could be physiologic and due to muscular uptake.


   Conclusion Top


Gallbladder activity on the NaF PET/CT may indicate that hepatobiliary excretion of the radiotracer is the reason for bowel activity. However, excretion of radiotracer through bowel may also contribute to the bowel activity.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Chakraborty D, Bhattacharya A, Mete UK, Mittal BR. Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med 2013;38:616-21.  Back to cited text no. 1
[PUBMED]    
2.
Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 2007;27:277-82.  Back to cited text no. 2
[PUBMED]    
3.
Aratake M, Yoshifumi T, Takahashi A, Takeuchi R, Inoue T, Saito T. Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography. Knee Surg Sports Traumatol Arthrosc 2009;17:53-9.  Back to cited text no. 3
[PUBMED]    
4.
Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 2010;51:1826-9.  Back to cited text no. 4
[PUBMED]    
5.
Bastawrous S, Bhargava P, Behnia F, Djang DS, Haseley DR. Newer PET application with an old tracer: Role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics 2014;34:1295-316.  Back to cited text no. 5
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Case Report
   Discussion
   Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed1215    
    Printed31    
    Emailed0    
    PDF Downloaded129    
    Comments [Add]    

Recommend this journal